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Abstract. The self-organized criticality in the nearest-neighbor version of the Bak-Sneppen model is in-
vestigated from the event-by-event fluctuations of the mean fitness. The finite-size effect on the evolution
of the critical state is shown, and a scaling solution to the gap equation for an infinite one-dimensional
lattice is given numerically for the first time. The mean lifetime of avalanches is presented as a function of
the gap from the solution. The critical value of the gap and an exponent are calculated from the solution.

PACS. 64.60.-i General studies of phase transitions – 05.40.-a Fluctuation phenomena, random processes,
noise, and Brownian motion – 87.10.+e General theory and mathematical aspects

1 Introduction

The phenomenon of “self-organized criticality” (SOC) has
become a topic of considerable interest in the investiga-
tion of complex systems. The interest originates from the
novel laws governing the phenomenon and the potential
applications which range from the behavior of a sandpile
and the description of the growth of surfaces to a generic
description of biological evolution [1–10]. It is observed
that, contrary to our naive expectations, the dynamics
of complex systems in nature does not follow a smooth
and gradual path, instead it often occurs in punctuated
bursts or “avalanches”. The nonequilibrium systems can
evolve towards a critical state with fractal properties in
the space and time dimensions. No simple rule can be
used to describe the spatial-temporal complexity. Power-
law distributions for the spatial size and lifetime of the
“avalanches” have been observed in various complex sys-
tems and are regarded as “fingerprints” for SOC. Such
complexity also shows up in simple mathematical models
for biological evolution and growth phenomena far from
equilibrium. However, it is fair to say that our understand-
ing of the nature of SOC is still in its infancy, since up to
now no commonly accepted strict meaning of SOC exists
even though a minimal definition was given in [11] and
renewed in [12].

One of the simplest SOC models is the one-dimensional
Bak-Sneppen (BS) model. There are so called nearest-
and random-neighbor BS models which are introduced
in [13–15] to mimic biological evolution. In this paper only
the nearest neighbor BS model will be considered because
that version is widely regarded as one of the simplest re-
alizations of SOC. Unlike the random-neighbor version of
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the BS model [16], quantities in the nearest-neighbor ver-
sion cannot be analytically calculated.

In the BS model random numbers (fitness) ξj (j =
1, 2, · · · , L) uniformly drawn from (0, 1) are assigned in
the initial state to the L sites of a one-dimensional lat-
tice. In each update a site with minimum fitness is to be
located, and that site and its two nearest neighbors are
assigned new random numbers which are also drawn uni-
formly from (0, 1). The maximum of the minimum fitness
before sth update is called the gap G at time s. With
this update procedure the gap G increases and at last ap-
proaches a critical value fc.

In the BS model an avalanche with a gap G is defined
as the update process as long as the gap G remains un-
changed. Therefore it begins when the gap G is reached
for the first time and ends when a new, larger gap is ob-
tained. The size (or lifetime) of an avalanche is the number
of time steps involved in the avalanche. Denote 〈S〉G as
the average size of avalanches with a fixed gap G. Accord-
ing to the update rules of the BS model the distribution
of random numbers above the gap G on the sites is flat, so
that the average jump size in the gap at the completion of
each avalanche is (1 − G)/L. For any selected resolution
∆G � 1 there is a system size L sufficiently large that
many avalanches are needed to increase the gap from G
to G + ∆G. Therefore the average number of avalanches
required to increase the gap by∆G isNav = ∆GL/(1−G).
When L � ∆G−1 we ensure that Nav � 1. In the large
L limit Nav can be arbitrary large, and with such a limit
the average number of time steps required for the gap in-
crease is given by the interval ∆s = 〈S〉GNav. From the
law of large numbers the fluctuations of this interval rel-
ative to its average value vanish as ∆G → 0. Thus we
get ∆G/∆s = (1−G)/(L〈S〉G). By taking the continuum
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limit a gap equation was derived in [17] which in our case is

dG
ds

=
1−G
L〈S〉G

· (1)

The gap equation describes how the system is driven to its
critical state and plays a fundamental role in understand-
ing the nature of the BS model. Once the solution to the
gap equation is known, the exponents associated with the
critical state and the critical point fc can be determined.
Unfortunately, the solution has never been obtained ana-
lytically nor numerically in any previous investigations of
the model. The main obstacles are that the gap G(s) is a
random number in an update process for finite L and that
equation (1) is exact and meaningful only for L→∞. To
the best of our knowledge, 〈S〉G is not known as a func-
tion of the gap G analytically or numerically, and only an
ansatz on its behavior was given in [17] for G quite close
to its critical value fc. More fundamentally, we should ask
whether the number of updates s in equation (1) is the
best variable to describe a system approaching its critical
state. We will show in this paper that the answer to this
question is negative.

In the gap equation the mean avalanche lifetime 〈S〉G
is normally an implicit function of both the gap G and
lattice size L. In the evolution of an avalanche which lasts
S updates, only a finite number (no more than S + 2) of
sites are involved. If the lattice size L is very large, the
avalanche can hardly detect the size of the lattice. Thus
〈S〉G may have weak dependence on L and will approach
a certain finite constant in the limit L → ∞ for given
G < fc. Then from equation (1) one can see that the
gap G will be asymptotically a function of a scaled vari-
able t = s/L. The scaled variable t has a simple physical
meaning. In the one-dimensional BS model three sites are
assigned new random numbers in each update. After s
updates 3s random numbers are updated (some sites un-
dergo the update more than once). Thus t is one third the
average number of updates each site undergoes. Since the
only way for the system to approach its critical state is
the update of the random fitness on the sites involved, t is
a more suitable variable than s to describe the evolution
of the system to the critical state.

For finite L the gap G is random and depends on s and
L separately, and the departure of G(s, L) from its asymp-
totic scaling form G(t) reflects the finite-size effect in the
process to SOC. An interesting question has never been
answered: What is the fluctuation property of G(s, L) if
the same evolution is repeated many times? Though G(t)
is essential and important theoretically because only G(t)
can show the true nature of the BS model without ad-
ditional influence from the finiteness of the lattice used,
one cannot get the scaling function G(t) directly since in
real investigations the lattice size is always finite and the
consumption of computing time and capacity increases
quickly with the lattice size L. So another question can
be raised: Can we get the limiting behavior G(t) from
G(s, L)? If yes, how? We will give answers to all the ques-
tions in this paper.

In this paper, we try to investigate the gap G as a
function of the scaled time t for L → ∞ and 〈S〉G as a
function of G. The investigation can check the validity of
the ansatz used in [17] and give a complete picture on how
fast the system is driven to its critical state. We will show
in this paper that the ansatz is true only for the gapG very
close to its critical value fc. Differing from usual studies
of the model, we focus our attention on the event-to-event
fluctuations of the fitness and the finite-size effect on the
evolution. We will show that only such a study enables
one to extract the limiting scaling solution G(t) to the
gap equation.

This paper is arranged as follows. In Section 2 we in-
vestigate the fluctuation property of the BS model. From
the fluctuations we can get the limiting scaling behaviors
of interesting quantities in Section 3. The critical value of
the gap and an exponent are also given in this section.
Section 4 contains conclusions.

2 Fluctuations in the BS model

In [18] it is suggested to investigate the mean fitness of a
lattice at the sth update in a simulation of the BS model.
The average is over all the L sites. We denote an evolution
process from the initial state by event i, and the mean
fitness of the event for a system at update s is then

fi(s, L) ≡ ξ̄(s) =
1
L

L∑
j=1

ξj(s) . (2)

With fi(s, L) instead of the minimum of ξj a different
hierarchy of avalanches can be found. Different from the
minimum of the fitness ξj at time s this averaged fitness
fi(s, L) is a global quantity. Since the lattice size L and
various exponents for the model are global quantities, one
has reason to expect that fi(s, L) is more suitable than the
minimum of ξj for the study of global properties such as
the finite-size effect. We will show below that interesting
properties of the BS model can indeed be obtained from
fi(s, L).

Suppose that we were able to perform exactly the same
updating process on an infinitely large lattice. Because
〈S〉G is finite for G < fc, a higher gap can be expected af-
ter approximately 〈S〉G updates. Due to the infinity of the
lattice size L, there are infinitely many sites with fitness
in any finite interval ∆G. So, the increase of the gap can
only be infinitesimal, and the scaled time spent for such
an increase of the gap is also infinitesimal. Therefore, the
gap equation has a continuous solution for L→∞. In an
avalanche with gap G < fc, there would be only a finite
number of sites with fitness smaller than G. After the av-
erage over all ξj on the infinite number of sites is done,
the finite number of sites with fitness less than G would
have zero contribution to fi, and one would have

fi =
1 +G

2
(3)
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since an infinite amount of random numbers ξj should be
distributed uniformly in the range of (G, 1). No fluctua-
tion on the mean fitness fi could be observed for an infinite
lattice.

Now we turn to a realistic finite lattice system. Sup-
pose that the system has experienced s updates and ob-
tained a gap G. Then there will be a nonzero fraction of
sites with fitness less than G during an avalanche. For such
a system fi(s, L) will be different from event to event due
to the randomness of the fitness ξj assigned to each site. In
other words, fi(s, L) is also a random number, and there
exist fluctuations in fi(s, L) from one evolution event to
another. Normally, the fluctuations will make it more dif-
ficult to investigate some interesting quantities. We will
show, however, that the fluctuations in fi(s, L) can be
studied in an event-by-event way and can give us some
useful information about the essence of the model. The
event-by-event analysis method has recently been used in
experimental data analysis in high energy physics [19–25]
as a powerful tool to study the nature of fluctuations of
some global quantities. As stated above, the mean fitness
of the system is a global variable, so the event-by-event
analysis method may be useful in extracting from the fluc-
tuations meaningful information on the evolution of the
system.

Some features of the fluctuations of the averaged fit-
ness fi(s, L) can be foreseen from the updating rules of
the BS model. Since the periodic boundary conditions are
adopted in the model, the L sites are equivalent, and all
the random fitness ξi on the sites will, as a consequence
of the equivalence of the sites, satisfy the same distribu-
tion, although it is nonuniform and still unknown. Then
one can expect, for an evolution event i with lattice of size
L� 1,

fi(s, L) = 〈f〉+
ri√
L

(4)

according to the central-limit theorem. In the last equa-
tion 〈f〉 is the ensemble average of the random mean-
fitness fi(s, L) over many evolution processes from the
same initial state, and ri is a random number satisfying
Gaussian distribution with zero mean and a width of O(1)
and represents the fluctuations of fi(s, L) in an evolution
at update s for a system with size L.

We now can probe into the properties of the fluctu-
ations of fi(s, L). If there were, at update s, the same
nonzero fraction of sites with fitness ξj less than the gap
G in simulations with lattices of different size L, the ran-
dom numbers ξi would be distributed uniformly in the re-
gions (G, 1) but non-uniformly in (0, G) (distributions in
both regions are determined by the gap and the fraction
of sites with ξj < G), as can be seen from the randomness
of the fitness ξj on each site and the update rules of the
BS model. Then both 〈f〉 and ri should be independent of
L. The assumption of a fixed nonzero fraction of sites with
ξj less than G would have two consequences: (1) 〈f〉 less
than (1 +G)/2 by a constant for all L; (2) the product of
the width σ of the fluctuations of fi and the square root
of L, denoted as σL ≡ σ

√
L, would also be a constant for
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Fig. 1. Distributions of the average fitness fi(s, L) at a scaled
time t = s/L = 3.0 for six lattice sizes L. Gaussian fitted
curves are drawn in solid curves.

all L. Here, σL is the width of the distribution of ri. Of
course, the assumption of fixed fraction of fitness over the
gap G is not true in the real case. In real simulations of
the model with finite L, the number of sites involved in
an avalanche with gap G (only those sites can have fitness
less than the gap) is almost independent of the lattice size
as long as the system is large enough. This means that the
fraction of sites with fitness less than G certainly depends
on the lattice sites L. On average, the smaller the L, the
larger the fraction. Such dependence of the fraction on L
will result in the L dependence of the Gaussian distribu-
tion of fi(s, L): The smaller the lattice size L, the smaller
the 〈f〉 while the width of ri is larger. So both 〈f〉 and σL
depend on L.

To verify our predictions, six simulations of the BS
model with L = 100, 150, 200, 300, 400 and 600 are done.
In each evolution of the simulation from the initial state
2000 updates are performed. Since we are interested in the
fluctuations of fi and the finite-size effect we first look at
the distributions of fi(s, L) at a scaled time t = s/L = 3.0
for illustration. The normalized distributions for fi are
shown in Figure 1 for six L. All of them are of perfect
Gaussian over three orders of magnitude. The distribu-
tions of fi at other scaled time t are also Gaussian. This
means that all the evolution processes have the same sta-
tistical property once they are viewed at the same scaled
time t. This shows an advantage of variable t over the nat-
ural one s. From this figure one can get the peak positions
fP and the widths σ. fP and σL are shown in Figure 2 as
functions of 1/L. As announced in the last paragraph,
with the increase of L, fP increases since the peaks of the
Gaussian distributions in Figure 1 shift slightly towards
the right but σL decreases slightly.
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Fig. 2. The peak fP and σL, the product of
√
L and the width

σ, of the Gaussian distributions in Figure 1 as functions of 1/L
for t = 3.0.

3 Size dependence and limiting behaviors
in the BS model

Since the fluctuations in fi are of Gaussian type, the mean
〈f〉 can be obtained without fitting the distribution of fi
if one additional average is made over a sample of Nevent

(� 1) evolution events from the initial state. Thus we
have

f(t, L) =
1

Nevent

Nevent∑
i=1

fi(s, L) ' 〈f〉 = fP . (5)

Theoretically, there will still exist fluctuations in f(t, L)
as long as Nevent is finite. From the central-limit theorem
again the width of the reduced Gaussian fluctuations in
f(t, L) is now of the order of 1/

√
LNevent. Without any

difficulty one can always choose Nevent quite large, a few
hundred thousand for example. With such a big event sam-
ple there is in fact no visual fluctuation in f(t, L) which
can be taken equal to 〈f〉 for any t and L.

To see the behavior of f(t, L) and to study the finite
size effect f(t, L) is shown in Figure 3 as functions of t from
the six simulations with different lattice size L mentioned
above. In each simulation, Nevent is chosen to be 500 000.
From the curves in Figure 3 the finite-size effect can be
clearly seen. It is shown that the difference between the
curves with L = 100 and 150 is the largest for fixed t
while that between L = 400 and 600 is very small. This
means the curve with L = 600 is already quite close to the
asymptotic one. One can see in detail the L dependence of
f(t, L) from the curves in Figure 3 by looking at the points
corresponding to the same t for different L. For example,
from the values of f(t, L) at t = 3.0 which have already
been given in upper part of Figure 2, the dependence of
f(t, L) on L can be extracted. It is fascinating to notice
that the six points at t = 3.0 can be fitted well by the
following expression

f(3, L) = fP = A−B/L , (6)
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Fig. 3. Behaviors of the sample averaged fitness f(t, L) as
functions of t for six different lattice sizes L.

with A = 0.74092 and B = 0.80929. This L dependence
form of f(t, L) can, of course, be anticipated. But one
should notice that such a simplicity can be shown only
in the study of fluctuations of the mean fitness with the
scaled time t. Because of such a L dependence the horizon-
tal axis in Figure 3 is chosen to be 1/L instead of L. The
fitted curve is also shown in the upper part of Figure 2
as a solid curve. Since the six points can be well fitted by
equation (6), one may wonder to which L the fitting for-
mula is usable. One very special lattice with L = 3 should
be mentioned here. On the one hand, for such a lattice all
the three sites are always involved in every update, thus
one cannot expect the occurrence of any critical state. On
average, the state of the lattice is the same at any time
in the update process. It is easy to see theoretically that
the mean fitness f(t, 3) should always be 1/2, no matter
how many updates have been performed on the lattice. On
the other hand, one can get from equation (6) a result for
f(t, 3) = fP = 0.47115. The closeness of the result from
the fitting ansatz with our exact theoretical expectation
may indicate that equation (6) is, with quite high accu-
racy, true for all L ≥ 3 and t and that other terms with
higher powers in 1/L can be neglected. With equation (6)
one can have

f(t, L) = f∞(t)− F (t)
L
· (7)

In the last equation f∞(t) = (1 + G(t))/2 is the mean
fitness for an infinite lattice at scaled time t and can be
related to the scaling solution G(t) of the gap equation in
the BS model for an infinite lattice, while F (t) measures
the finite-size effect. Using f(t, 3) = 1/2 one gets the finite-
size correction from the last equation

F (t) = 3
(
f∞(t)− 1

2

)
. (8)
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Fig. 4. Scaling solution G(t) to the gap equation (1) for an
infinite lattice. Two curves are obtained from simulations of
f(t, L) with lattice size L = 100 and 200, respectively.

Based on this ansatz one can extract f∞(t) from simula-
tions with finite lattice size L as

f∞(t) =
1 +G(t)

2
=
f(t, L)− 3/(2L)

1− 3/L
· (9)

This gives us an opportunity to extract the limiting be-
havior of the mean fitness from a simulation with finite
L. The obtained result for f∞(t) from the simulation data
with L = 100 is shown in Figure 3 as a thick solid curve.
Collapsed curves can be obtained from simulation results
with other L’s. One can also try to get f∞(t) by using
equation (7) from two simulations with different L with-
out using equation (8). The curve obtained in this way is
also coincident with that shown in Figure 3. This means
that higher order terms of 1/L in equation (7) can be
neglected.

From these relations the scaling function G(t) can be
calculated from any set of data with finite L. We find that
almost collapsed curves for G(t) can be given from the
six simulations we have performed. For illustration two
calculated curves from simulations with L = 100 and 200
are shown in Figure 4 for t in the range (0, 10).

Because of the gap equation (1), it is more convenient
to rewrite − ln(1 − G) instead of G as a function of t,
since the first derivative of − ln(1 − G) with respect to t
is just the reciprocal of 〈S〉G. The behavior of − ln(1−G)
is shown in Figure 5. 2000 data points extracted from
the simulations are used in the figure. It is interesting
to note here that the curve in Figure 5 can be very well
parameterized by a simple expression

− ln(1−G) = A

(
1−

(
t0

t0 + t

)δ 1 + a1t+ b1t
2

1 + a2t+ b2t2

)
,

(10)
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Fig. 5. − ln(1−G) as a function of t. The solid curve is from
the curves in Figure 4 and the dashed curve from the parame-
terization equation (10).

with A = 1.0996, δ = 0.5883, t0 = 0.965, a1 = 2.2, a2 =
2.5, b1 = 0.24, b2 = 0.21. Though the parameters in the
above expression can be calculated through complicated
nonlinear fittings, they are, in fact, obtained in this paper
from manual adjustment through comparing the curves
from simulations and from the last expression. Since the
curve from the expression almost coincides with the one
from the simulations, parameters from nonlinear fitting
should be very close to the ones given above. From this
parameterization, one can find that G ' A(δ/t0+a2−a1)t
for t� t0, and fc−G ∝ t−δ for t→∞. The critical value
fc is determined from A through fc = 1 − exp(−A) =
0.667, and the exponent γ in the ansatz 〈S〉G ∼ (fc −
G)−γ is (1 + δ)/δ = 2.70. The results for fc and γ are in
good agreement with those in [17] which were obtained
from a different statistical method. This shows that the
same information about the critical state can be obtained
without the knowledge of the avalanche size distribution.
The mean lifetime 〈S〉G of avalanches with gap G can be
calculated from equations (10) and (1) and is shown in
Figure 6 as a function of fc−G. At first glimpse, it seems
that 〈S〉G is a power of fc−G for the entire region shown.
In fact, the slope decreases a little with the increase of
ln(fc − G). That means that 〈S〉G increases slowly with
G for small G and quickly for larger G. Eventually 〈S〉G
becomes divergent for G → fc. If one does a linear fit to
the curve for a very small ln(fc − G) region (namely, for
G very close to its critical value), the exponent γ = 2.70
can be found.

4 Conclusions

In summary, a new method to study the self-organized
criticality in the BS model is adopted in this paper. We
suggest that a scaled time t would be a better variable for
investigating the process approaching the critical state.
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Fig. 6. ln〈S〉G as a function of ln(fc−G) for an infinite lattice.
〈S〉G diverges with exponent γ = 2.70 when G→ fc = 0.667.

The finite-lattice-size effect on the evolution is investi-
gated from the fluctuations of the mean fitness fi for the
one-dimensional BS model in an event-by-event way, and
a scaling solution for the gap equation is given for the
first time, and a function 〈S〉G of G is also given numer-
ically. We show that the critical value of the gap and the
divergent exponent γ can be obtained from the numerical
results.
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